### LOW RATES AND RISK

HÉLÈNE REY<sup>1,2</sup>

 $^{1}$ LONDON BUSINESS SCHOOL  $^{2}$ CEPR, NBER

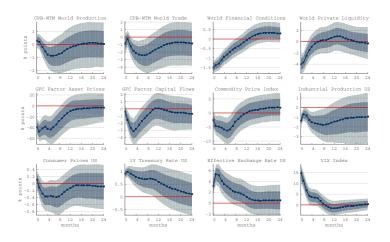
Bernacer Prize In honour of Ralph Koijen November 22, 2021

#### MONETARY POLICY TRANSMISSION

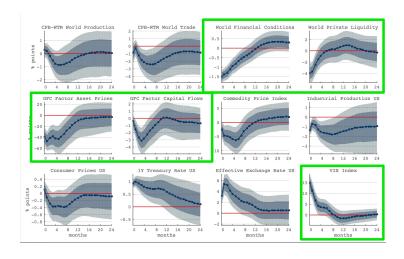
- Neo-keynesian models: moving the short rate and expected path of the short rate affects aggregate demand and asset prices (Woodford (2003), Gali (2008))
- ▶ Aggregate demand management translates into wage and price inflation according to some version of the Phillips curve

 Open economy versions: tradeoff between output gap stabilization and the terms of trade (Obstfeld and Rogoff (2002), Corsetti and Pesenti (2005), Farhi and Werning (2013))

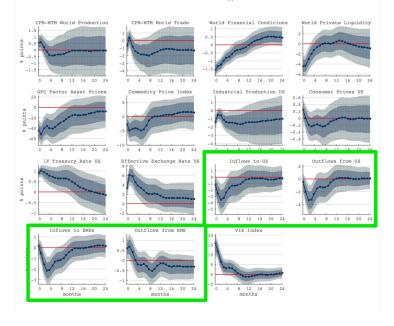
#### FINANCIAL MARKETS AND MONETARY POLICY TRANSMISSION


- ▶ Broadly defined as the "credit channel" of monetary policy (Bernanke and Gertler (1995), Kiyotaki and Moore (1997), Gertler and Kiyotaki (2013))
- ▶ Agency costs are important. Applies to banks and non banks, households, corporates: "net worth", "balance sheet", "bank" channel.
- ▷ There is an external finance premium which is affected by monetary policy
- ▷ "Risk taking channel" (Borio and Zhu (2008), Adrian and Shin, Bruno and Shin (2014), Coimbra and Rey (2020))
- ▶ Emphasis is put on risk and leverage (Value-at-Risk constraints)
- ▶ In good times, asset prices are high, spreads are compressed and measured risk is low. Leverage is less constrained.
- RALPH AND MOTO'S WORK IS KEY TO ESTIMATE EFFECT OF MONETARY POLICY (QE) ON ASSET PRICES.

#### RISK AND LOW RATES


▶ Ralph and Moto's work on insurance companies: variable annuities, imperfect hedging, duration gap. Are runs relevant in case of an abrupt increase in interest rates?

▶ Banks: leverage risk.


### Transmission of US Monetary Policy #1



### Transmission of US Monetary Policy #1



### Transmission of US Monetary Policy #2



## Global Asset Prices and Risk Aversion

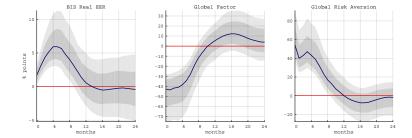



Figure: Response of Asset Prices (% points) to a monetary policy shock inducing a 100bp increase in the Effective Fed Funds Rate.

## Other Measures of Risk Aversion

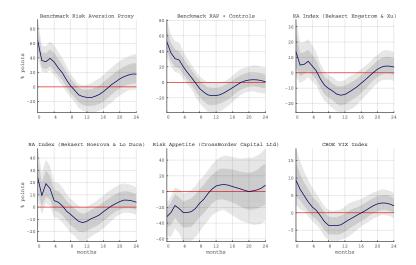



Figure: Response of Risk aversion (% points) to a monetary policy shock inducing a 100bp increase in the Effective Fed Funds Rate.

# Bank Leverage in the US and the EU

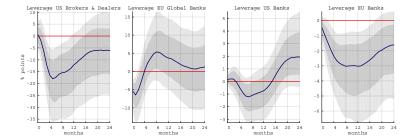



Figure: Response of Banking Sector Leverage (% points) to a monetary policy shock inducing a 100bp increase in the Effective Fed Funds Rate.

# Taking stock

▶ US Monetary Policy is a driver of credit creation worldwide, global factor in asset prices, risk premium, leverage of global banks, cross border flows.

#### ► Interpretation:

- ▶ US Monetary Policy is driving time varying risk aversion in global markets. This could be due to composition effects in international financial markets (Geanakoplos (2010); Coimbra and Rey (2020))
- ▶ Fluctuations of the market shares of the most risk taking agents over the Global Financial Cycle
- ▶ During the 2003-2008 period global banks were the most risk taking agents
- ▶ Looser US monetary policy decreases funding costs of global banks who leverage more. When leveraged global banks are marginal pricers of assets, risk premia are lower.

## International Flows

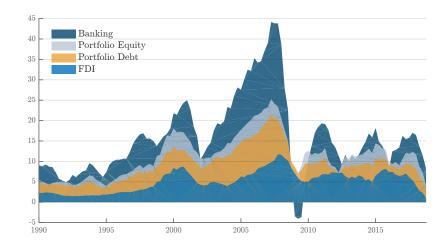
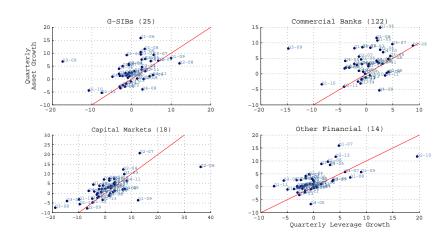




Figure: Flows scaled by world GDP

# Leverage of Banks



# Banks and Systemic Risk: International Sample

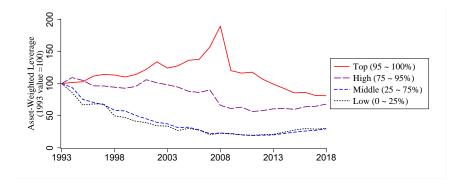



Figure: Leverage quantiles of banks

# Banks and Systemic Risk

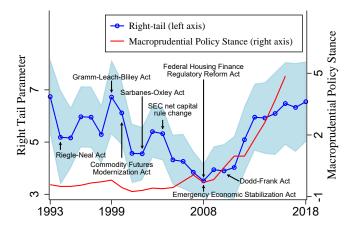



Figure: Blue line going down means more risk taking (structural estimates from ganular balance sheet data). Source: Coimbra, Kim and Rey (2021)  $Journal\ of\ Monetary\ Economics$ 

#### Conclusions

- Koijen Yogo's and Koijen Gabaix work key to understand how regulatory constraints and macroeconomic conditions interact
- 2. Key for insurance companies (vastly understudied before)
  - $\,\triangleright\,$  Low rate and insurance balance sheets: duration gap

- 3. Regulatory constraints and regulation also key for banks risk taking
  - ▶ Low rate and lax regulation: high leverage
- 4. Public finances